State of Seismic Hazard Analysis: Reviewing the Needs after Mw 7.8 Gorkha, Nepal Earthquake

Tara Nidhi Bhattarai, Takashi Nagao, Tara Nidhi Lohani

Abstract


Although Nepal experienced Mw 7.8 earthquake in 2015, researchers are arguing that a high magnitude earthquake approaching Mw 9 is likely to occur again in the future. This finding is based on the geodetically measured elastic strain stored at a rate of  about 20 mm/year on the Main Himalayan Thrust (MHT) for the last ~>700 years, and also on the findings of paleo seismological studies conducted at some parts of the Terai-Siwalik region of Nepal. Based on literature reviews, this paper provides an overview of geological settings followed by the status of earthquake hazard assessment in Nepal. For better understanding of seismic hazard in community level, “further research needs are identified". It includes, among others, the need of analyzing seismic hazard based on the peak ground velocity (PGV) particularly for those locations which are underlain by thick sediments, and where the trend of high-rise building constructions are also increasing.

Keywords


Himalayan Seismicity, Seismic Hazard, Earthquake, Gorkha, Nepal

Full Text:

PDF

References


Abrahamson, N., Gregor, N., & Addo, K. (2016). BC hydro ground motion prediction equations for subduction earthquakes. Earthq. Spectra, 32(1), 23-44.

Ader, T., Avouac, J. P., Liu-Zeng, J., Lyon-Caen, H., Bollinger, L., Galetzka, J., … Flouzat, M. (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Jour. Geophys. Res.117, B04403. doi:10.1029/2011JB009071

Allen, T. I., & Wald, D. J. (2009). On the use of high-resolution topographic data as a proxy for seismic site conditions (VS30). Bull. Seismol. Soc. Am, 99(2A), 935-943.

Atkinson, G. M., & Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their applications to Cascadia and other regions. Bull. Seismol. Soc. Am., 93, 1703-1729.

Avouac, J. P., Meng, L., Wei, S., Wang, W., & Ampuero, J. P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nature Geosciences. doi: 10.1038/NGEO2518

Avouac, J. P., Bollinger, L., Lavé, L., Cattin, R., & Flouzat, M. (2001). Le cycle sismiqueen Himalaya. C. R. Acad. Sci., 333, 513-529.

Bhandary, N.P., Yatabe, R., Paudyal, Y.R., Yamamoto, K., Lohani, T. N., & Dahal, R.K. (2012). Geo-info database and microtremor survey for earthquake disaster risk mitigation in Kathmandu Valley. In: Proceedings of the AWAM International Conference on Civil Engineering (AICEE'12) and Geohazard Information Zonation (GIZ'12). Malaysia (Penang). 28-30 August, 860-868.

Bhattarai, M., Adhikari, L. B., Gautam, U. P., Laurendeau, A., Labonne, C., Hoste-Colomer, R., … Hernandez, B. (2015). Overview of the large 25 April 2015 Gorkha Nepal earthquake from accelerometric perspectives. Seismological Research Letters, 86(6). doi: 10.1785/0220150140.

Bilham, R. (2019). Himalayan earthquakes: A review of historical seismicity and early 21st century slip potential. In P. J. Treloar and M. P. Searle (Eds.), Himalayan tectonics: A modern synthesis. Geological Society, London, Special Publications, 483, https://doi.org/10.1144/SP483.16

Bilham, R., Larson, K., & Freymuller, J. (1997). GPS measurements of present-day convergence across the Nepal Himalaya. Nature, 386, 61-64.

Bilham, R., Bodin, P., & Jackson, M. (1995). Entertaining a great earthquake in western Nepal: Historic activity and geodetic test for the development of strain. Jour. Nepal Geol. Soc., 11, 73-78.

Bollinger, L., Tapponnier, P., Sapkota, S. N., & Klinger, Y. (2016). Slip deficit in central Nepal: Omen for a repeat of the 1344 AD earthquake. Earth, Planets and Space, 68, 12. doi: 10.1186/s40623-016-0389-1

Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthq. Spectra, 30(3), 1057-1085.

Boore, D. M., & Atkinson, G. M. (2008). Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5% damped PSA at spectral periods between 0.01s and 10.0s. Earthq. Spectra, 24(1), 99-138.

Borcherdt, R. D. (1970). Effect of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1), 29-61.

Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10s. Earthquake Spectra, 24(1), 139-171.

Cattin, R., & Avouac, J. (2000). Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J. Geophys. Res., 105(13), 389-13.

Center for Engineering Strong Motion Data. (accessed on 2019/03/25; URL: https://www.strongmotioncenter.org/index.html). CESMD.

China Earthquake Administration (CEA). (2005). Training material on seismic hazard analysis for engineering sites (GB17741-2005).

Chaulagain, H., Rodrigues, H., Silva, V., Spacone, E., & Varum, H. (2015). Seismic risk assessment and hazard mapping in Nepal. Nat Hazards, 78, 583-602. doi: 10.1007/s11069-015-1734-6.

Chiou, B. S.J., & Youngs, R. R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthq. Spectra, 24(1), 173-215.

Dhakal, Y. P., Kubo, H., Suzuki, W., Kunugi, T., Aoi, S., & Fujiwara, H. (2016). Analysis of strong ground motions and site effects at Kantipath, Kathmandu, from 2015 Mw 7.8 Gorkha, Nepal, earthquake and its aftershock. Earth, Planets and Space, 68:58. doi: 10.1186/s40623-016-0432-2.

Dixit, A. M., Ringler, A.T., Sumy, D. F., Cochran, E. S., Hough, S. E., Martin, S. S., … McNamara, D. E. (2015). Strong motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network. Seismol Res Lett, 86, 1533-1539. doi:10.1785/0220150146

Department of Urban Development & Building Construction. (http://www.dudbc.gov.np accessed on 2019/06/27). DUDBC.

Elliott, J. R., Jolivet, R., González, P. J., Avouac, J. P., Hollingsworth, J., Searle, M. P., & Stevens, V. L. (2016). Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake. Nature Geoscience, 9 (2), 174-180. ISSN 1752-0894.

Gansser, A. (1964). Geology of the Himalayas. Hoboken, New Jersey: Wiley Interscience.

Goda, K., Kiyota, T., Mohan Pokhrel, R., Chiaro, G., Katagiri, T., Sharma, K., & Wilkinson, S. (2015). The 2015 Gorkha Nepal earthquake: insights from earthquake damage survey. Frontiers in Built Environment, 1(8), 1-15. https://doi.org/10.3389/fbuil.2015.00008.

Guragain, R., Pradhan, S., Maharjan, D. K., & Shrestha, S. N. (2018). Building code implementation in Nepal: an experience on institutionalizing disaster risk reduction in local governance system. https://doi.org/10.1016/B978-0-12-812711-7.00013-4.

Japan International Cooperation Agency. (2016).The project for assessment of earthquake disaster risk for the Kathmandu Valley in Nepal, JICA ERAKV NEWS, No.2.

Kawashima, K., Aizawa, K., & Takahashi, K. (1984). Attenuation of peak ground motion and absolute acceleration response spectra. In: Proceedings of the 8th world conference on earthquake engineering. San Francisco, California, USA, 21–28 July, 2, 257–264.

Kumar, S., Wesnousky, S. G., Rockwell, T. K., Briggs, R. W., Thakur, V. C., & Jayangondaperumal, R. (2006). Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya, Jour. Geophys. Res., 111, B03304. doi:10.1029/2004JB003309.

Kumar, S., Wesnousky, S.G., Jayangondaperumal, R., Nakata, T., Kumahara, Y., & Singh, V. (2010). Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: Timing, size, and spatial extent of great earthquakes. Jour. Geophys. Res., 115, B12422. doi:10.1029/ 2009JB006789.

Lavé, J., & Avouac, J.-P. (2000). Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. Jour. Geophys. Res., 105, 5735-5770.

Lavé, J., Yule, D., Sapkota, S., Basant, K., Madden, C., Attal, M., & Pandey, R. (2005). Evidence for a great medieval earthquake (approximate to 1100 AD) in the central Himalayas, Nepal. Science, 307, 1302-1305.

Miyakoshi, J., & Hayashi, Y. (2000). Correlation of building damage with indices of seismic ground motion intensity during the 1999 Chi-Chi, Taiwan earthquake. International Workshop on Annual Commemoration of Chi-Chi Earthquake, Taipei, Taiwan.

Molnar, P. (1987). The distribution of intensity associated with the 1905 Kangra earthquake and bounds on the extent of the rupture zone. J. Geol. Soc. India, 29, 211-229.

Mukul, M., Jade, S., Bhattacharya, A. K., & Bhusan, K. (2010). Crustal shortening in convergent margins: Insights from Global Positioning System (GPS) measurements in northwest India. Jour. Geol. Soc. India, 75, 289-299.

Nakata, T., & Kumahara, Y. (2002). Active faulting across the Himalaya and its significance in the collision tectonics. Active Fault Research, 22, 7-16.

Nepal Disaster Report. (2011). Government of Nepal, Ministry of Home Affairs publication.

National Disaster Response Framework. (accessed on 2019/03/25, URL: http://drrportal.gov.np/uploads/document/113.pdf or http://un.org.np/sites/default/files/NDRF_ English%20version_July-2013.pdf, 2013.

Nelson, K. O., Zhao, W., Brown, L. D., et al. (1996). Partially molten middle crust beneath southern Tibet: Synthesis of project indepth results. Science, 274, 1684-1688.

Nepal Hazard Risk Assessment. (2010). URL accessed on 2019/03/25. https://www.adpc.net/Igo/category/ID276/doc/2013-b27Iym-ADPC-NHRA_Report.pdf.

National Research Institute for Earth Science and Disaster Resilience, Database, Japan (accessed on 2019/03/25 URL: http://www.kyoshin.bosai.go.jp/).

Nepal National Building Code. (1994). Seismic design of buildings in Nepal (NBC 105). Ministry of Physical Planning and Works, NNBC, Government of Nepal, Kathmandu.

Omar, A., Pineda-Porras, & Ordaz, M. (2012). Seismic damage estimation in buried pipelines due to future earthquakes – The case of the Mexico City Water System. The Research gate publication, Earthquake-Resistant Structures Design, Assessment and Rehabilitation, DOI: 10.5772/29358.

Omine, H., Hayashi, T., Yashiro, H., & Fukushima, S. (2008). Seismic risk analysis method using both PGA and PGV. The 14th World Conference on Earthquake Engineering, October 12-17, Beijing, China.

Pandey, M. R., Chitrakar, G. R., Kafle, B., Sapkota, S. N., Rajaure, S., & Gautam, U. P. (2002). Seismic hazard map of Nepal. Department of Mines and Geology, Kathmandu.

Pant, M. R. (2002). A step toward a historical seismicity of Nepal. Adarsa, 2, 29-60.

Piya, B. K. (2004). Generation of a geological database for the liquefaction hazard assessment in Kathmandu valley. Master thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands, p 141.

Sakai, H. (2001). Stratigraphic division and sedimentary facies of the Kathmandu basin group, Central Nepal. Jour. Nepal Geol. Soc., 25(special issue), 19-32.

Shamsher, B. (2015). Nepal’s Great Earthquake of 1990 B. S. (in Nepali). Nepalaya Publication, Kathmandu.

Sapkota, S. N., Bollinger, L., Klinger, Y., Tapponnier, P., Gaudemer, Y., & Tiwari, D. (2013). Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nature Geosci, 6, 71-76.

Schiffman, C., Bali, B. S., Szeliga, W., & Bilham, R. (2013). Seismic slip deficit in the Kashmir Himalaya from GPS observations. Geophys. Res. Lett., 40, 5642-5645, doi:10.1002/2013GL057700.

Searle, M. P., Windley, B. P., Coward, M. P., Cooper, D. J. W., Rex, A. J., Red, D., …Surendra, K. (1987). The closing of Tethys and the tectonics of Himalaya. Geol. Soc. Amer. Bull., 98(6), 678-701.

Singh, S. K., Mena E., & Castro, R. (1988). Some aspects of the source characteristics and ground motion amplification in and near Mexico City from acceleration data of the September, 1985, Michoacan, Mexico Earthquakes. Bull. Seism. Soc. Am, 78, 451-477.

Srivastava, H. N., Verma, M., Bansal, B. K., & Sutar, A. K. (2013). Discriminatory characteristics of seismic gaps in Himalaya. Geomatics, Natural Hazards and Risk, http://dx.doi.org/10.1080/19475705.2013.839483.

Stein, S., Brooks, E. M., Spencer, B. D., & Liu, M. (2018). Should all of Nepal be treated as having the same earthquake hazard? J.H. Kruhl et al. (eds.), Living under the threat of Earthquakes, Springer, Natural Hazards, https://doi.org/10.1007/978-3-319-68044-6_2.

Stevens, V. L., & Avouac, J. P. (2016). Millenary Mw > 9:0 earthquakes required by geodetic strain in the Himalaya. Geophys. Res. Lett. 43(3), 1118-1123.

Stevens, V. L., & Avouac, J. P. (2015). Interseismic coupling on the main Himalayan thrust. Geophys. Res. Lett. 42(14), 5828-5837.

Stevens, V. L., Shrestha, S. N., & Maharjan, D. K. (2018). Probabilistic seismic hazard assessment of Nepal. Bulletin of the Seismological Society of America, 108(6), 3488–3510, doi: 10.1785/0120180022.

Styron, R., Taylor, M., & Okoronkwo, K. (2010). Data base of active structures from the Indo-Asian collision. Eos Trans. AGU, 91(20), 181–182.

Takai, N., Shigefuji, M., Rajaure, S., Bijukchhen, S., Ichiyanagi, M., Dhital, M. R., & Sasatani, T. (2016). Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake. Earth Planets Space, 68(1), 10.

Thapa, D. R., & Guoxin, W. (2013). Probabilistic seismic hazard analysis in Nepal. EarthqEng & EngVib, 12, 577-586.

Upreti, B. N., Nakata T., Kumahara, Y., Yagi, H., Okumura, K., Rockwell, T.K., … Maemoku, H. (2000). The latest active faulting in southeast Nepal. In K. Okumura, K. Takada, and H. Goto (Eds.), Active fault research for the new millennium (pp. 533-536). Hokudan Int. Symp. and Sch. on Active Fault, Hokudan, Awaji Island, Hyogo, Japan.

Wald, D. J., & Allen T. I. (2007). Topographic slope as a proxy for seismic site conditions and amplification, Bull. Seismol. Soc. Am. 97(5), 1379-1395.

Wesnousky, S.G., Kumahara, Y., Chamlagain, D., & Neupane, P.C. (2019). Large Himalayan Frontal Thrust paleoearthquake at Khayarmara in eastern Nepal. Journal of Asian Earth Sciences, doi: https://doi.org/10.1016/j.jseaes.2019.01.008.

Wu, Y., Teng, T., Shin, T., & Hsiao, N. (2003). Relationship between peak ground acceleration, peak ground velocity and intensity in Taiwan. Bulletin of the Seismological Society of America, 93(1), 386-396.

Wu, H., Masaki K., Irikura, K., Saguchi, K., Kurahashi, S., & Wang, X. (2012). Relationship between building damage ratios and ground motion characteristics during the 2011 Tohoku Earthquake. Journal of Natural Disaster Science, 34(1), 59-78.

Yamazaki, F., & Murao, O. (2000). Vulnerability functions for Japanese buildings based on damage data due to the 1995 Kobe Earthquake, Implications of Recent Earthquakes on Seismic Risk, Elnashai, A.S. and Antoniou, S. ed., Imperial College, London, 91-102.

Youngs, R., Chiou, S.,Silva, W., & Humphrey, J. (1977). Strong ground motion attenuation relationships for subduction zone earthquakes. Seism. Res. Lett., 68, 58-73.

Zhang, P., Yang, Z., Gupta, H. K., Bhatia, S. C., & Shedlock, K. M. (1999). Global Seismic Hazard Assessment Program (GSHAP) in continental Asia. ANNALI DI GEOFISICA, 42(6), December, https://doi.org/10.4401/ag-3778.

Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., …Fukushima, Y. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull. Seismol. Soc. Am. 96(3), 898-913.

Zhao, W., Nelson, K. D., Che, J., Quo, J., Lu, D., Wu, C., & Liu, X. (1993). Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366, 555-559.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Tara Nidhi Bhattarai, Takashi Nagao, Tara Nidhi Lohani

Journal of Development Innovations

ISSN 2371-9540

Copyright © KarmaQuest International