Trace Element Concentrations in Arsenic (As) Contaminated Drinking Water in Nepal Reflect Sediment Surface-Ground Water Interactions

Barbara Mueller

Abstract


Since more than a decade it is known that in a variety of countries in South East Asia, arsenic (As) contamination of ground water used for drinking poses a serious health hazard. In ground water of these countries, the concentrations of the highly toxic elements frequently exceed the World Health Organization (WHO) drinking water guideline of 10 μg/L. According to a widely accepted hypothesis, a reductive dissolution of Fe-bearing minerals releases As-oxyanions. As the concentrations of As and Fe in ground water in the lowlands (Terai) of Nepal are highly variable as a function of location and a clear de-coupling of As and Fe resulting in a loss of correlation between these two elements, the mentioned hypothesis has to be questioned. Major trace element analysis of the ground water depicts a low concentration of Fe but substantial amount of Na, K, Li, B and Mo in these waters. All these elements are positively correlated with As; therefore, pointing to clayey sediments mainly consisting of micas and other clay minerals as the hosts of As. This specific pattern of trace element distribution is related to a so far underestimated original source of As as the peraluminous leucogranites found ubiquitously in the Nepalese Himalayas.


Keywords


Arsenic, Clay minerals, Decoupling, Trace elements, Leucogranite

Full Text:

PDF

References


Acharyya, S. K., Lahiri, S., Raymahashay, B. C., & Bhowmik, A. (2000). Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: The role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environmental Geology, 39, 1127-1137.

Ahmed, F., Hawa Bibi, M., Ishiga, H., Fukushima, T., & Maruoka, T. (2010). Geochemical study of arsenic and other trace elements in groundwater and sediments of the Old Brahmaputra River Plain, Bangladesh. Environmental Earth Sciences, 60, 1303-1316.

Adhikari, H. J. & Ghimire, T. R. (2009). Prevalence of arsenicosis in Ramgram municipality, Nawalparasi, Nepal. International Journal of Health Research, 2, 183-188.

Berg, M., Trang, P. T. K., Stengel, C., Buschmann, J., Viet, P. H., Dan, N. V., Giger, W., & Stüben, D. (2008). Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology, 249, 91-112.

Bhattacharya, P., Jacks, G., Ahmed, K. M., Khan, A. A., & Routh, J. (2002). Arsenic in groundwater of the Bengal delta plain aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69, 538-545.

Bhattacharya, P., Tandukar, N., Neku, A., Valero, A. A., Mukherjee, A. B., & Jacks, G. (2003). Geogenic arsenic in groundwaters from Terai Alluvial Plain of Nepal. Journal de Physique IV France, 107, 173-176.

Borisova, A. Y., Pokrovski, G. S., Pichavant, M., Freydier, R., & Candaudap, F. (2010). Arsenic enrichment in hydrous peraluminous melts: Insights from femtosecond laser ablation-inductively coupled plasma-quadrupole mass spectrometry, and in situ X-ray absorption fine structure spectroscopy. American Mineralalogist, 95, 1095-1104.

Borisova, A. Y., Thomas, R., Salvi, S., Candaudap, F., Lanzanova, A., & Chmeleff, J. (2012). Tin and associated metal and metalloid geochemistry by femtosecond LA-ICP-QMS microanalysis of pegmatite - leucogranite melt and fluid inclusions: new evidence for melt-melt-fluid immiscibility. Mineralogical Magazine, 76, 91–113.

Brikowski, T. H., Neku, A., Shrestha, S. D., & Smith, L. S. (2014). Hydrologic control of temporal variability in groundwater arsenic on the Ganges floodplain of Nepal. Journal of Hydrology, 518(C), 342-353.

Brikowski, T. H., Smith, L. S., Shei, T. C., & Shrestha, S. D. (2004). Correlation of electrical resistivity and groundwater arsenic concentration, Nawalparasi, Nepal. Journal of the Nepal Geological Society, 30, 99-106.

British Geological Survey (BGS) Report (2001). Groundwater Quality: Nepal, 4p.

Carosi, R., Montomoli, C., Rubatto, D., & Visona, D. (2013). Leucogranite intruding the South Tibetan Detachment in western Nepal: implications for exhumation models in the Himalayas. Terra Nova, 25, 478-489.

Chakraborty, S., Wolthers, M., Chatterjee, D., & Charlet, L. (2007). Adsorption of arsenite and arsenate onto muscovite and biotite mica. J. of Colloid and Interface Science, 309, 392-401.

Dixit, S. & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implication for arsenic mobility. Environmental Science and Technology, 37, 4182-4189.

Diwakar, J., Johnston, S. G., Burton, E. D., & Shrestha, S. D. (2015). Arsenic mobilization in an alluvial aquifer of the Terai region, Nepal. J. of Hydrology Regional Studies, 4(A), 59-79.

Dowling, C. B., Poreda, R. J., Basu, A. R., Peters, S. L., & Aggrawal, P. K. (2002). Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Air Soil and Pollution, 38, 1173-1191.

France-Lanord, C., Derry, L., & Michard, A. (1993). Evolution of the Himalaya since Miocene time: isotopic and sedimentologic evidence from the Bengal fan. In: Treloar, P. J., & Searle, M. (eds.). Himalayan Tectonics. Geological Society Special Publications, London, 74, 445-465.

Garzanti, E., Vezzoli, G., Ando, S., France-Lanord, C., Singh, S. K, & Foster, G. (2004). Sand Petrology and focused erosion in collision orogens: the Brahmaputra case. Earth and Planetary Science Letters, 220, 157-174.

Godin, L., Grujic, D., Law, R. D., & Searle, M. P. (2006). Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction. In: Law, R.D., Searle, M.P., & Godin, L. (eds.). Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society Special Publications, London, 26, 1-23.

Goldberg, S., Forster, H. S., & Heick, E. L. (1993). Boron Adsorption Mechanisms on Oxides, Clay Minerals, and Soils Inferred from Ionic Strength Effects. Soil Science Society of America Journal, 57, 704-708.

Guillot, S. & Charlet, L. (2007). Bengal arsenic, an archive of Himalaya orogeny and paleohydrology. Journal of Environmental Science and Health, 42A, 1785-1794.

Guillot, S., Garçon, M., Weinman, B., Gajurel, A., Tisserand, D., France-Lanord, C., van Geen, A., Chakraborty, S., Huyghe, P., Upreti, B. N., & Charlet L. (2015). Origin of arsenic in Late Pleistocene to Holocene sediments in the Nawalparasi district (Terai, Nepal). Environmental Earth Science, DOI 10.1007/s12665-015-4277-y.

Guillot, S. & Le Fort, P. (1995). Geochemical constraints on the bimodal origin of High Himalayan leucogranites. Lithos, 35, 221-234.

Guo, Z. & Wilson, M. (2012). The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Research, 22, 360-376.

Gurung, J. K., Ishiga, H., & Khadka, M. (2005). Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal. Environmental Geology, 49, 98-113.

Horneman, A., van Geen, A., Kent, D., Mathe, P. E., Zheng, Y., Dhar, R. K., O’Connell, S., Hoque, M., Aziz, Z., Shamsudduha, M., Seddique, A., & Ahmed, K. M. (2004). Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions Part I: evidence from sediment profiles. Geochimica Cosmochimica Acta, 68, 3459-3473.

Hug, S. J., Gaertner, D., Roberts, L. C., Schirmer, M., Ruettimann, T., Rosenberg, T. M., Badruzzaman, A.B.M., & Ashraf Ali M. (2011). Avoiding high concentrations of arsenic, manganese and salinity in deep tubewells in Munshiganj District, Bangladesh. Applied Geochememistry, 26, 1077-1085.

Kansakar, D. R. (2004). In: Department of Irrigation, Lalitpur, Nepal, HMG/Nepal. Arsenic testing and finalization of groundwater legislation project, summary project report. Geologic and geomorphologic characteristics of arsenic contaminated groundwater area in Terai, Nepal, 85-96.

Katsoyiannis, I. A., Hug, S. J., Ammann, A., Zikoudi, A., & Hatziliontos, C. (2007). Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: Correlations with redox indicative parameters and implications for groundwater treatment. Science of the Total Environment, 383, 128-140.

McArthur, J. M., Ravenscroft, P., Safiullah, S., & Thirlwal, M. F. (2001). Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resource Research, 37, 109-117.

Maden, N., Sing, A., Smith, L. S., Maharjan, M., & Shrestha, S. (2011). Factors associated with Arsenicosis and Arsenic Exposure Status in Nepal: Implications from Community Based Study. Journal of Community Health, 36, 76-82.

Maharjan, M., Watanabe, C., Ahmad, A., & Ohtsuka, R. (2005). Short report: Arsenic contamination in drinking water and skin manifestations in lowland Nepal: The first community-based survey. American Journal of Tropical Medicine and Hygiene, 73(2), 477-479.

Mueller, B. (2017). Arsenic in groundwater in the southern lowlands of Nepal and its mitigation options: A review. Environmental Reviews, 25, 296-305.

Mueller, B. (2017a). Another geological disaster besides earthquakes in Nepal: How people suffer from arsenic contaminated groundwater in the lowlands of the country. Journal of Development Innovations, 1 (2), 86-105.

Mueller, B. (2018). Preliminary trace element analysis of arsenic in Nepalese groundwater may pinpoint its origin. Environmental Earth Sciences, 77, 35-40.

Mueller, B., Frischknecht, R., Seward, T.M., Heinrich, C.A., & Camargo Gallegos, W. (2001). A fluid inclusion study of the Huanuni tin deposit Bolivia: Some insights with LA-ICP-MS analysis. Mineralium Deposita, 36, 680-688.

Mueller, B. & Hug, S. J. (2018). Climatic variations and de-coupling between arsenic and iron in arsenic contaminated ground water in the lowlands of Nepal. Chemosphere, 210, 347-358.

Nakano, A., Kurosawa, K., Shamim, U. M. D., & Tani, M. (2014). Geochemical assessment of arsenic contamination in well water and sediments from several communities in the Nawalparasi District of Nepal. Environmental Earth Science, 72, 3269-3280.

Ngai, T. K. K., Murcott, S. E., Shrestha, R. R., Dangol, B., & Maharjan, M. (2006). Development and dissemination of KanchanTM arsenic filter in rural Nepal. Water, Science and Technology, 6, 137-146.

Ngai, T. K. K., Shrestha, R. R., Dangol, B., Maharjan, M., & Murcott, S. E. (2007). Design for sustainable development - Household drinking water filter for arsenic and pathogen treatment in Nepal. Journal of Environmental Science and Health A. Toxic/Hazardous Substances and Environmental Engineering, 42, 1879-1888.

Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403-413.

Nordstrom, D. K. (2002). Worldwide occurrences of arsenic in groundwater. Science, 296, 143-145.

NRCS-ENPHO (2002). Report on the household survey on the health impact of arsenic contaminated ground water in Bara district. A mimeographed report. Drinking water quality improvement program, Kathmandu, Nepal.

Rahman, M., Dong, Z., & Naidu, R. (2015). Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: Potential cancer risk. Chemosphere, 139, 54-64.

Rai, S. M. (2003). Distribution of boron in the rocks of central Nepal Himalaya. Journal of the Nepal Geological Society, 28, 57-62.

Ravenscroft, P. & McArthur, J. M. (2008). Mechanism of regional enrichment of groundwater by boron: the examples of Bangladesh and Michigan, USA. Applied Geochemistry, 19,

-1430.

Rudnick, R. L. and Gao, S. (2003). Composition of the continental crust. In: Holland, H. D.; & Turekian, K.K. (eds.). Treatise on Geochemistry. Elsevier, Amsterdam, 1–64.

Searle, M. P., Avouac, J. P., Elliott, J., & Dyck, J. E. (2016). Ductile shearing to brittle thrusting along the Nepal Himalaya: Linking Miocene channel flow and critical wedge tectonics to 25th April 2015 Gorkha earthquake. Tectonophysics, http://dx.doi.org/10.1016/j.tecto.2016.08.003.

Shah, B. A. (2008). Role of Quaternary stratigraphy on arsenic-contaminated groundwater from parts of Middle Ganga Plain, UP-Bihar, India. Environmental Geology, 53, 1553-1561.

Sharma, C. K. (1995). Shallow (phreatic) aquifers of Nepal. Sangeeta Publishing Kathmandu, Nepal, 1st Edn., 272 p.

Sharma, R. M. (1999). Research study on possible contamination of groundwater with arsenic in Jhapa, Morang, and Sunsari districts of Eastern Terai of Nepal. Report of WHO Project, DWSS Government of Nepal.

Shrestha, R. K., Regmi, D., & Kafle, B. P. (2014). Seasonal variation of arsenic concentration in groundwater of Nawalparasi district of Nepal. International Journal of Applied Science and Biotechnology, 2(1), 59-63.

Shrestha, B. R. & Shrestha, K. B. (2004). Spatial distribution of arsenic concentration in groundwater in the Terai, Nepal. In: Kansakar, D. R. (ed). Summary Project Report. Department of Irrigation, Lalitpur, Nepal, HMG/Nepal, 85-96.

Smedley, P. K. & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517-568.

Smith, A. H., Lingas, E. O., & Rahman M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization, 78(9), 1093-1103.

Stanger, G. (2005). A palaeo-hydrogeological model for arsenic contamination in southern and south-east Asia. Environmental Geochemistry and Health, 27, 359-367.

Stueben, D., Berner, Z., Chandrasekharam, D., & Karma, J. (2003). Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of As under reducing conditions. Applied Geochemistry, 18, 1417-1434.

Thakur, J. K., Thakur, K. R., Ramanathan, A., Kumar, M., & Singh, S. K. (2011). Arsenic contamination of Groundwater in Nepal - An overview. Water, 3, 1-20.

Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438-462.

Upreti, B. N. (1999). An overview of the stratigraphy and tectonics of the Nepal Himalya Journal of Asian Earth Sciences, 17, 577-606.

van Geen, A., Aziz, Z., Horneman, A., Weinman, B., Dhar, R. K., Zheng, Y., Goodbred, S., Versteeg, R., Seddique, A. A., Hoque, M. A., & Ahmed, K. M. (2006). Preliminary evidence of a link between surface soil properties and the arsenic content of shallow groundwater in Bangladesh. Journal of Geochemical Exploration, 88, 157-161.

van Geen, A., Radloff, K., Aziz, Z., Cheng, Z., Huq, M. R., Ahmed, K. M., Weinman, B., Goodbred, S., Jung, H. B., Zheng, Y., Berg, M., Trang, P. T. K., Charlet, L., Metral, J., Tisserand, D., Guillot, S., Chakraborty, P., Gajurel, A. P., & Upreti, B. N. (2008). Comparison of arsenic concentrations in simultaneously-collected groundwater and aquifer particles from Bangladesh, India, Vietnam and Nepal. Applied Geochemistry, 23, 3244-3251.

Verma, S., Mukherjee, A., Choudhury, R., & Mahanta, C. (2016). Brahmaputra river basin groundwater: Solute distribution, chemical evolution and arsenic occurrences in different geomorphic settings. Journal of Hydrology Regional Studies, 4, 131-153.

Wenk, C., Kaegi, R., & Hug, S. J. (2014). Factors affecting arsenic and uranium removal with zero-valent iron: laboratory tests with Kanchan-type iron nail filter columns with different groundwaters. Environmental Chemistry, 11, 547-557.

WHO (2001). Arsenic contamination in groundwater affecting some countries in the South-East Asia Region. WHO: Washington, DC, USA.

Winkel, L., Trang, P. T. K., Lan, V. M., Stengel, C., Amini, M., Ha, N. T., Viet, P. H., & Berg, M. (2011). Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. PNAS, 10, 1246-1251.

Yadav, I. C., Devi, N. L., & Sing, S. (2014). Spatial and temporal variation in arsenic in the groundwater of upstream of Ganges River Basin, Nepal. Environmental Earth Science, DOI 10.1007/s12665-014-3480-6.

Yadav, I. C., Devi, N. L., & Sing, S. (2015). Reductive dissolution of iron-oxyhydroxides directs groundwater arsenic mobilization in the upstream of Ganges River basin, Nepal. Journal of Geochemical Exploration, 148, 150-160.

Yadav, I. C., Dhuldhaj, U. P., Mohan, D., & Singh, S. (2011). Current status of groundwater arsenic and its impacts on health and mitigation measures in the Terai basin of Nepal: An overview. Environmental Reviews, 19, 55-67.

Yousafzai, A., Eckstein, Y., and Dahl, P. S. (2010). Hydrochemical signatures of deep groundwater circulation in a part of the Himalayan foreland basin. Environmental Earth Sciences 59,

-1098.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Barbara Mueller

Journal of Development Innovations

ISSN 2371-9540

Copyright © KarmaQuest International